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ABSTRACT 

A pair (G, K) in which G is a finite group and K a normal nontrivial proper 
subgroup of  G is said to be an F2-pair (a Frobenius type pair) if  I C~(x)l = 
I C~/K(xK) I for all x E G \ K. A theorem of Camina asserts that in this case 
either K or G/K is a p-group or else G is a Frobenius group with Frobenius 
kernel K. The structure of  G will be described here under certain assumptions 
on the Sylow p-subgroups of G. 

Introduction 

A pair (G, K), where G is afinite group and K a normal nontrivial subgroup of  
G, is said to satisfy condition F2 i f  IC~/x(xK)I = IC~(x)l for all x ~ G \ K .  
Such a pair will be also called an F2-pair. We know of 5 types of examples of 

such groups; these will be described below. Our purpose here is to show that 
under certain conditions these are the only examples. 

Here are the 5 types of examples: 

Type I: G is a Frobenius group and K is the Frobenius kernel. 
Type 2: F2-pairs (G, K), where G is a p-group. These can be found in 

[M, M 1 ]. They exist for every prime p. The simplest example here is G being 
an extra-special p-group and K = Z(G). 

Type 3: F2-pairs, (G, K) in which K < P < G where P is a normal Sylow 
p-subgroup of G. Here (P, K) is also an F2-pair. Furthermore G = RP where R 
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is a p-complement and RK is a Frobenius group with Frobenius kernel K and 
Frobenius complement R. Examples of this type can be found in [CM]; they 

exist for any prime p. 
Type 4: G is a Frobenius group in which a Frobenius complement is 

isomorphic to Q8 (the quaternion group of  order 8) and K is a subgroup of  index 
4. Examples of this type can be found in [C] and [CM]. 

Type 5: Two special examples of  order 2 a 3 b, one with K a 2-group and one 
with K a 3-group, that will be discussed later. 

Many properties of F2-pairs of type 2 are established in [M, M l, Ma] and of 
those of  type 3 in [CM]. Recently, an example of class 4 was constructed by 

C. K. Gupta. 
A Theorem of Camina, [C], states that if (G, K) is an F2-pair not of type 1, 

then either K or G/K is a p-group for some prime p.  Hence, there is a prime 
associated with every F2-pair not of type 1. To specify this prime, we will call 

an F2-pair, (G, K), an F2( p)-pair i f  either K or G/K is a p-group, but (G, K) is 
not o f  type I. We note that in F2-pairs (G, K) of types 3 and 5 we have that Kis 
a p-group, while in those of types 2 and 4 G/K is a p-group. 

Let (G, K) be an F2( p)-pair  with K a p-group and P E Syl, (G). We will see 

that  K is a member  of every central series of P. Thus the cases K = P '  = [P, P] 
and K = Z(P) are of interest. It turns out that in both cases G has to be of 

type 3. 

THEOREM 1. Let (G, K) be an F2(p)-pair for some prime p and let P E  
Sylp(G). Suppose that either (i) K = Z(P) or (ii) K = P'. Then (G, K) is o f  

type 3. 

COROLLARY 2. Let (G, K) be an F2(p)-pair for some prime p with K a p- 

group. Let P E Sylp(G). Suppose that either 
(i) P/K is abelian, or 

(ii) The nilpotency class o f  P is at most 3, or 

(iii) I PI < pS. 
Then (G, K) is o f  type 3. 

REMARK. The examples of type 5 are F2(p)-pairs in which K is a p-group 
but (G, K) is not of  type 3. In these examples the nilpotency class of P is 4 and 
I P I -- p6. Thus the assumptions on the nilpotency class or the order of P in 
Corollary 2 cannot, in general, be relaxed. 

For F2(p)-pairs,  (G, K), with G/K a p-group we have: 
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THEOREM 3. Let (G, K) be an F2(p)-pair with G/K a p-group and let 
P ~ Sylp(G). Assume that either one of the following holds: 

(l) P is regular (in the sense of  P. Hall). 
(2) p is odd and P is abelian by cyclic. 
(3) P is of  maximal class. 
(4) The nilpotency class of  P is at most p + I. 
(5) K M P = Z(P). 
(6) P contains an abelian subgroup of index p2. 
(7) The nilpotency class of P is at most 4. 

Then ( G , K) is either of type 2 or of type 4. 

REMARK. We know of  no other examples of  F2( p)-pairs in which G/K is a 

p-group (except for pairs of  types 2 and 4). Also, in general K M P is a member 

of both the lower and the upper central series of P and G has a normal p- 

complement (see Lemma 2.1). 

Section 1 of the paper includes the proofs of Theorem l, Corollary 2, some 

other properties of F2(p)-pairs (G, K) with K a p-group and a discussion of 

pairs of type 5. Pairs with G/K a p-group are considered in Section 2 in which 

the proof of Theorem 3, as well as some other properties of such pairs, can be 

found. 
Our notation is standard. We will mention here three pieces of notation: The 

nilpotency class of the nilpotent group T will be denoted by cl(T) and the lower 

central series of the group S will be denoted by St _-_ $2 >_- • • • => S,,, namely 

S = S D S 2 ~- [ S ,  S ]  : S" ,  S i : I S  i_  1, S] for 1 < i < m. The i-th term of the 
upper central series of S will be denoted by Z,(S). 

We note here that (G, K) is an F2-pair if and only if for each g E G \ K and 

each h ~ K, g is conjugate in G to gh (see [CM, 3.1 ]). 

I. F2(p)-pairs, (G, K), with K a p-group 

PROPOSITION 1.1. Let (G, K) be an F2(p)-pair with K a p-group and let 
P ~ Sylp(G). Then K appears as a term in every central series of P. 

PROOF. Let P = Q0 > Qt >-- Q2 >-- • ' • >-- Qc. ~ = 1 be a central series of P 

(not necessarily the lower central series). As Q_~ _-< Z(P) we get by [CM, 3.4] 

that Qc < K. So, there is an index i such that 1 ~ Qi < K but Q/_ t~K.  

We claim that Q~ = K. Assume the contrary, namely, that Q~ < K and let 

x ~ Q~_ t \ K. We have that [x, P] =< Q~. As the number of conjugates o fx  in P is 

equal to the number of  elements in the set {[x,y] l y E P } ,  we get that 
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I P: Ce(x) l _-< I Qi I < I KI. It follows that I P /K I < I Ce(x)  l. Now the F2 
property implies that: 

I G/K I,, = I P /KI  > I C~,x(xK)Ip = I C~(x)I,, > I Ce(x) l  > I P /KI  = I G/K Ip, 

a contradiction. • 

In general, if (G, K) is an F2(p)-pair,  then P t3 K is a member  of every 
central series of P. The proof  is as above or from [CM, M 1 ]. 

PROOF OF THEOREM 1. It suffices to show that P<~G. Once P<~G, then 
G = PM where M is a p-complement  and we get that (G, K) is of type 3 by 
[CM, 4.2 and 4.3]. 

(i) Z(P) = K<~G implies that K = Z(P g) for all g ~ G  and by [CM, 4.5] we 
get that P = Pg for all g E G so that P<1G as desired. 

(ii) Let G be a minimal  counterexample and let N ~ 1 be a minimal normal 
subgroup of  G contained in K. I f N  < K = P', then (G/N, K/N)  is an F2(p)- 
pair. As P/NESylp(G/N)  and since (P /N) ' - -P ' /N  = K / N  induction implies 
that P/N<~G/N, a contradiction. Thus K = N is a minimal normal subgroup of  
G. By [CM, 3.4 and 3.5] we get that cl(P) > 1 and that Z(Q) < K for all 
QESylp(G). As K is minimal  normal we get that K = (Z(Q) [ QESylp(G)) 
and consequently K centralizes f"l{Q [ Q~Sylp(G)} = Op(G). Hence, 
Op(G) < Cc(K)<1G. By [CM, 4.3] Ca(K) is ap-group and so Co(K) = Ce(K) = 
Op(G). If  cl(P) = 2 then by Proposition 1.1 K = Z(P) and we get a contradic- 
tion using (i). Thus cl(P) > 3. 

We now break the proof  into steps. 
Step 1. (P, K) is an F2-pair. In particular p is odd. 
Let x E P \ P '  and set A - {Ix, y] ] y E P } .  By the remark at the end of the 

introduction we have to show that A = P'. Clearly, A < P '  and I A I =  
I{y- lxy  ]Y~P}I  = IP: Cv(x)l. Now, P/P' centralizes xP'  and as P/P 'E  

Sylp(G/P') we obtain that I P/P'I = I Co~e,(xP')Ip. The F2 property implies that 

I Ce(x) l  =< IC~(x)l, = I C~,e,(xP')lp = IP: P'I.  

Consequently IAI = IP: Cp(x)l > IP'I so that A = P '  as desired. The fact 
that p is odd now follows from [M 1, 3.1 ]. 

Step 2. Op(G) is abelian. 
As K = P2 and Oe(G) = Ce(P2) we use [H, III. 2.14] to obtain that 

(O~(G))'-- [C~(eg, C~(e2)] ~ Z(P) .  
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But Z(P) < K and hence (Op(G))' < K. Since K is a minimal  normal subgroup 

we get that (Op(G))' = 1 so that Op(G) is abelian. 

Step 3. Op(G) > K. 
Suppose that Op(G)=K.  Then [CM, 4.4] implies that Oo(G/K)= 

I 

Oo,(G/K ) = 1. If, now, M i s  a minimal  normal subgroup of  G/K, then M h a s  to 
be a direct product of  nonabelian simple groups. So I M I is even and, as p ~ 2, 

I 

the Sylow 2-subgroups of M are either cyclic or generalized quaternion (see 
[CM, 4.3]). This contradicts [BS] and [H, IV.2.8]. Thus Op(G) > K. 

Step 4. Set I P2 : P31 -- pn, then I P"/'21 = P~n. 
Note that [P/P4, P/P4] --- P2/P4 and [P/P4, P/P4, P/P4] = Ps/P4. As (P, K) is an 

F2-pair it follows that (P/P4, K/P4) is an F2-pair with K/P4 = [PIP4, P/P4]. Now 

cl(P/P4) = 3 and I P2/P4"P3/P4I = p~ so we can apply [M, 5.2] to conclude 

that [P: Psi = I P/P4" P2/P4I = p2~. 

Step 5. Final contradiction. 
By Step 3 there is an element x E Oo(G) \ K .  As Op(G) is abelian and (P, K) is 

an F2-pair (by steps 1 and 2) we have that 

tOp(G)l < ICe(x)l = ICe,x(xK)l = ICe,e,(xP')l = I P : P ' I  = p 2 , .  

Next, the Sylow p-subgroups of  G/K are abelian and by [B] there exist two 
Sylow subgroups R and Q of G such that 

Op(G/K) = O~(G)/K = (R/Oo(G)) r3 (Q/Op(G)). 

Thus Op( G) = R A Q. Note that K = P' = R ' -- Q'. Let 1 ~ z E Z (R  ) C_ K (by 
[CM, 3.4]). As no p'-element of  G centralizes an element of  K (see [CM, 4.3]) 
we get that Co(z) is a p-group and consequently C~(z) = R.  It follows that 
Co(z) = R N Q = O~(G). We note that as z E K  = Q ' =  Q2 we know that 
zQ3E Q2/Q3 c_ Z(Q/Q3). Finally we use [I, 2.24] and step 4 to obtain: 

IOp(G)l = ICQ(z)l > ICQ,Q,(zQ3)I = IQIQ31 = IPIP3I = p3n.  

This contradicts the conclusion of  the previous paragraph. • 

PROOF OF COROLLARY 2. (i) AS P /K  is abelian, P' C_ K. By Proposition 1.1 
K __ P',  hence K = P '  and we are done by Theorem 1. 

(ii) Proposition 1.1 implies that either K = P' or K = Pa. In the former case 
the result follows from Theorem 1. I f K  =/ '3  then cl(P) -- 3 so that K c_ Z(P). 

Again, by Proposition 1.1 we get that Z(P) c_ K so that K = Z(P) and the result 
follows from Theorem 1. 
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(iii) Let G be a counterexample of minimal order. Since the assumptions 

are inductive modulo normal subgroups contained in K we get that K is a 

minimal normal subgroup. As in the proof of Theorem 1 we get that it is 

suffices to prove that P<~G. By Part (ii) cl(P) -- 4 so that I PI = pS. So P has a 
unique normal subgroup of each of the orders p, 19 2, p3 (see [H, III. 14.2]). 

By Theorem 1 K ~ Z ( P ) =  P4 and K ~ P2 so that Proposition 1.1 implies 

that K = / ' 3 - - Z 2 ( P ) .  Note that IZ(P) l = I Pal = p, I KI -- p2 and 

1/21 = IZ3(P)I = p3. 
As in the proof of Theorem l(ii) we get that K = <Z(Q) I Q E Sylp(G)) and 

that Op(G) = Co(K). Also, any two distinct Sylow p-subgroups of G have 

disjoint centers ([CM, 4.5]) and as K has exactly p + 1 subgroups of order 

I Z(P) I = P we conclude that G has exactlyp + 1 Sylow p-subgroups. Let ~ be 

the collection of these p + 1 subgroups and let N be the kernel of  the action of 

G on ~.  Clearly the Sylow p-subgroup of N is P f~ N = Op(G). As G / N  is a 

permutation group of degree p + 1 on E~ it follows that p = I G / N  [p = 

[PN/NI = Ie/Op(G)l so that I Op(G)I = p4. 
If Op(G) is abelian an element x E Op (G) \  K would have to satisfy 

p4 = I Oo(G)l < [ CG(x)Ip = I C~/K(XK)Ip < I G/K Ip = p3 

(by the F2-property), a contradiction. Thus Op(G) is not abelian and as K is 

minimal normal in G we get that 

[Op(G), Op(G)] = K, [Op(G), Op(G), Op(G)] = 1 

and both Kand Op(G)/Kare elementary abelian (see [H, III.7.1]). In particular, 

Op(G) is of  class 2. It follows that the Frattini subgroup of Op(G) is also K and 

so Op(G) is generated by two elements. By [H, III. 1.1 l(c)] K = [Op(G), Op(G)] 

is cyclic, a contradiction. • 

EXAMPLES. AS mentioned before, pairs (G, K) of type 5 are examples of 

F2( p)-pairs with K a p-group (for p = 2 or 3), which are not of  type 3. This fact 

is proved in [G, p. 383] where these examples were introduced. Since norma- 

lity of  P implies that the pair is of  type 3, it was asked in [CM] whether for any 

F2( p)- pair with K a p-group, (P, K) is also a F2-pair. We will see now that the 

Gagola's examples (type 5) are counterexamples to this assertion. These 
examples do not seem to be generalizable for p > 3, so for p > 3 it is still 

possible that P,~G for F2( p)-pairs, (G, K), with K a p-group. 
Let p be the prime 2 or 3, R = Z/pEZ,  M - - R  ~ R  and K =K~(M). 
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Consider the group S, whose elements are 2 × 2 matrices with coefficients in 
R, as follows: I fp  = 2, 

and if p = 3, 

1),(, _,)) 

°4),(°1 -'0),('6 47)) 
More detailed description of  the structure on S can be found in [G]. 

Consider now, in both cases, the (natural) semidirect product, G, of  Mwi th  

S. In [G, p. 367 and 383] it is shown that (G, K) is an F2(p)-pair. Let 

P~Sylp(G), then P is not normal in G. We show now that (P, K) is not an 

F2-pair. For p = 2, P is the semidirect product of  M with (a)  where 

-:) 
Note that P/K is not abelian, since aK interchanges, by conjugation in P/K, xK 
and yK, where x = (0, 1 ) E M  and y = (1, 1 )~M.  Thus xKq~Z(P/K) and 

I Ce/K(xK) I < 8. But I Ce(x)l > 16, since M centralizes x. 

For p = 3, P is generated by M and 

 =(40 °4), 4) 
Again, P/K is not abelian: bK permutes cyclically, by conjugation in P/K, 
the three elements xK, yK, zK, where x = (0, 1), y ---(1, 1), z = ( -  1, 1), 

x, y, z E M. Now, I Ce/K(xK) I < 27, while I Ce(x) I > 81. Hence (P, K) is not 
an F2-pair in either case. 

II. (F2(p))-pairs, (G, K), with G/K a p-group 

We start with a definition. 

DEFINITION. A finite group Xis called here a Frobenius-Wielandt comple- 

ment (FW-complement for short) if there exist a finite group G with H<~G and 
a prime q not dividing [G[ such that: 

(i) G acts on an elementary abelian q-group Q. 

(ii) All the elements in G \ H act fixed point freely on Q. 

(iii) X ~ G/H. 
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See [E, p. 564] for its definition of FW-complements and the second part of 
Theorem 1.5 of [E] (with its short proof) for the alternate definition which is 
like ours. 

LEMMA 2.1. Let (G, K) be an F2(p)-pair with G/K a p-group Then: 

(a) G has a normal p-complement. 

(b) Assume that G is not a p-group. Let PESylp(G) and R the normal 

p-complement o f  G. Then all the elements of  G \ K act fixed point freely on R.  In 

particular T / T  M K is a FW-complement for every subgroup T o fP  with T ~ K .  

(c) G is solvable. 

PROOF. Write G = PK where P is a Sylow p-subgroup of G. By [CM, 3.6] 
(P, P tq K) is an F2-pair. By [M, 2.1] P tq K __. [P, P] __. q~(P) where q)(P) is 
the Frattini subgroup of P. By a Theorem of Tate [H, IV.4.7] Khas a normal 
p-complement which is clearly a normal p-complement of G. This proves (a). 

To see (b), take g E G \ K .  Then IC~(g)l = IC~jK(gK)I which is a p- 
power. Hence g commutes with no p'-element. Therefore all elements of G \ K, 
including those in T \  T M K, act fixed-point-freely on R. By the Frattini 
argument, P normalizes some Sylow q-subgroup, Q0, ofR.  Set Q = f~l(Z(Q0)). 
Then all elements of P \ P ¢q K (and those of T \ T tq K) act fixed-point-freely 
on Q and (b) follows. Part (c) is a consequence of the classification of the finite 
simple groups (see [GO1, p. 55]) and parts (a) and (b). • 

REMARK. Lemma 2.1(a) was also proved, independently, by Isaacs [I1, 
Th.C]. 

LEMMA 2.2. Let (P, M)  be an F2-pair, where P is a p-group o f  class c. I f  

M ÷ Z(P) then cl(Zc_ I(P)) < c - 2. 

PROOF. Set Zj =Zj (P)  for l < j < c .  By [M, 2.1] M = Z i = P c + l - i  for 
some i. By assumption i > 2 and so by [M, 2.4] cl(P) > 3. Now [H, Ill.2.11] 

implies that 

[Zi, Zc-l] ffi [Pc+l-i, Zc-l] C Zc_l_(c +l_i)= Zi_ 2. 
Therefore 

I <-_ZI < Z2 < . . . <-_Zi_2 < Zi < Zi + I <= . . . < Zc_I 

is a central series of length c - 2 for Z~_ ~. • 

PROOF OF THEOREM 3, PARTS 1-6. Let G be a counterexample of minimal 
order. Set M = P N K, then G is not a p-group and M ~ 1 (see [CM, 3.3]). By 
Lemma 2.1 P / M  is a FW-complement and by [C, Lemma 7] P / M  is not cyclic. 
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Also, as G = KP, (P, M) is an F2-pair (see [CM, 3.6]). Furthermore, by [CM, 

5.1], cl(P) >_- 3. We claim that P is a maximal subgroup of  G. For if  P < U < G 

for some subgroup U of G then G = UK and so (U, K n U) is an F2-pair (by 

[CM, 3.6]) with U/K n U ~- UK/K ~-- G/K. Now, K n U __ K n P # 1, so that 

K n U is not a p'-group and so U is not a Frobenius Group with Frobenius 
kernel K n U (see [CM, 3.2]). Hence, (U, K n U) is an F2(p)-pair  with 

U/U n K p-group. By induction we get that I P [ - - 8  so that c l (P )<  3, a 

contradiction. Hence, P is maximal in G. 

Set Z = Z(P), let z E Z  and write D = C~(z). Then D >_-P. Suppose that 

D = G. By [CM, 3.4], z 6 K  and so (G/(z),  K/(z))  is an F2-pair. I fG/ ( z )  is a 

Frobenius group with Frobenius Kernel K/(z)  then G/K is isomorphic to a 

Frobenius complement forcing it to be either cyclic or generalized quaternion. 

This contradicts Lemma 7 of  [C]. Thus (G/(z), K/(z))  is an F2(p)-pair and 

induction implies that p = 2 and P/(z)  ~ Q8 with 

I P : M I  = IP:P AKI = IG:KI  = [G/ ( z ) :K/ ( z ) l  =4. 

As (P, M) is an F2-pair, P '  _ M (by [M, 2.1 ]) and hence M = P'. Then [M 1, 

3.1] implies that cl(P) = 2, a contradiction. It follows that D < G and as P is 

maximal we have that D = P. We conclude that Z acts fixed-point-freely on 

the normal p-complement, Q, whose existence follows from Lemma 2.1. Then 

Z is a Frobenius complement in the Frobenius group ZQ. In particular Z is 

cyclic. Also, Q as a Frobenius kernel is nilpotent. 

We will reach a contradiction in several cases that will cover all the cases of  
parts 1-6 of the Theorem. 

CASE I: P is regular. We get a contradiction by [LP]. 

CASE 2: p is odd and P is either of maximal class or abelian by cyclic. 
Using [S] we get that M _ [P, P]. Now, (P, M)  is an F2-pair and so [M, 2.1] 

implies that M = [P, P] = P'. We claim that P/M is of  rank 2. This is clearly 

true when G is of  maximal class. If P is abelian by cyclic, let A be a normal 
abelian subgroup of P with P/A cyclic. Then P '  __. A and M = P '  < A because 

otherwise P/M would be cyclic. As M = P n K -- A N K we get from Lemma 

2.1 that A / M  is an FW-complement. As A is abelian, A / M  must be cyclic (see 

for example [LP] and hence P/M is metacyclic, which is of  rank 2, as claimed. 

By [M, 2.1 and 2.3] P/M is elementary abelian and so I P/MI = p2. Note that 

(P/P4, M/P4) is an F2-pair with cI(P/P4) = 3 and M/P4 = [P/P4, P/P4]. By [M, 

5.2] we have that I P/P4 : M/P41 > p4, a contradiction. 

CASE 3: P has a cyclic subgroup of  index 2. Let S be such a subgroup. As 
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P / M  is not cyclic, S ÷ M. Pick x ~ S \ M. Then the F2 property of  (P, M)  

implies that 

I P / M I > I C p : M ( X M )  = I C,,,(x)l >_-ISl 

so tha t  I M I  < I N S  I = 2. It follows that  I M I  = 2 and  I P / M I  = I C~,/M(XM) I. 

Then S / M  c_ Z ( P / M )  which implies that P / M  is abelian. Clearly M cc_ Z (P)  

and by [M, 2.1] M = Z(P) .  Hence, cl(P) = 2, a contradiction. 

CASE 4: M = Z(P) .  Set Z = Z(P) .  Then Z is elementary abelian by [M, 

2.2], and as Z is cyclic, [Z I = P. If  there is an element o fo rde rp  in P \ M t h e n  

[C, Lemma 4] implies that K is nilpotent. This is impossible as Z acts fixed- 

point-freely on Q and Z < K = M Q .  Hence all the elements of  order p of  P lie 

in M, which has order p. Thus, P has exactly one subgroup of  order p and P is 

not cyclic. Therefore P is generalized quaternion and a contradiction is 

obtained by the previous case. 

Using the cases so far we can assume that cl(P) > 3, M ~ Z(P)  and P is 

neither regular nor of maximal class (the latter follows from cases 2 and 3 and 

[GO, pp. 191-194]). 

CASE 5: cl(P) < p + 1 and M v~ P'. Set c = cl(P) and Zj = Zj(P) for 

1 < j  < c .  By[M,  2 . 1 ] M = Z t f o r s o m e i  > 1 . A s M  :~ Z ( P ) , i >  1.If i  = c  - 1, 

then M = P '  by [M, 2.1 ], a contradiction. Thus 1 < i < c - 2 (so cl(P) > 3 in 

this case, for if cl(P) = 3 then M = P '  or Z(P)).  By Lemma 2.2 we get that 

cl(Zc_~) _-< c - 2 < p + 1 - 2 < p so that Zc-i is regular (see [H, III.10.2]). 

Lemma 2. l(b) implies that Zc-~/M is a FW-complement. It follows from [LP] 

that Zc_ l /M = Zc_ ~/Zi is cyclic. 

Suppose first that i _-< c - 3. Then Z2(P/M) = Z2(P/Zi) = Zi + 2/Zi c_ Z¢_ l/Zi 

and so Z2(P/M) is cyclic. As P / M  is not cyclic we get c I ( P / M ) >  2 and 

that p = 2 and P / M  contains a cyclic subgroup of  index 2 (see [H, III. 7.7]). 

Now [GO, pp. 191-193] implies that P / M  is of  maximal class and that 

IP /M:  (P/M)'I  = 4. By [M, 2.1] we have t h a t M  = Zi = Pc+~-i - P~ = P '  and 

consequently (P/M) '  = P ' / M  which implies that I P :  P' l  = 4. Then P itself is 

of  maximal class ([GO, p. 194]), a contradiction. 

Hence i = c - 2. Set Q = P / M .  Then Z(Q)  = Z(P/Z~_2) = Z~-l /Zc-2 is 

cyclic. Set X = P/Zc-3 and Y = M/Zc_  3. Then (X, Y) is an F2-pair in which 

Y = Zc_JZc_3 = Z(X) .  By [M, 2.2] we know that W =  Z2(X) /Z(X)  and 

V = Z3(X)/Z2(X) are elementary abelian. Note that: 

W _  Z¢_I/Z¢-3 
-~ z~_,/z~_~ = Z (Q)  

z~_Jz~_3 
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and 

ZJZc_  
v - ZJZc_  Q / Z ( g ) .  

Zc-,/Zc-3 

Therefore Z(Q), being cyclic, is of  order p and so Q is an extra special p-group. 

Then J Q I = ] P/M] = p2s+l for some natural number s ([GO, p. 204]), 

contradicting [M, 7.1 ]. 
CASE 6: cl(P) <= p + 1 and M = P'. Here M = Zc- ~(P) = P'. Set Q = 

P/P4 (possibly P4 = 1). Then (Q, Q') is an F2-pair with Q ' =  P'/P4 = M/P4. 
Also cl(Q) = 3 and in particular Q' is abelian ([H, III. 2.11]). Let 

[ M : P 3 [  = IQ"Q3I =pn and IP3"P41 = [Q31 =pr. 

By [M, 5.2, 2.3 and M1, 2.1] we know that I P : M I  = IQ: Q'I = p2,, r < n, 
n is even and that Q/Q' and Q'/Q3 are elementary abelian. 

Let x E Q \ Q' and y E CQ(x). We claim that I (x, y, Q')/Q'I = p. To see 

that write x =aP4, y =bP4 with a, b ~ P \ P 4 .  As Ix, y ]=  1 we have that 

[a,b]EP4. Set A = i a ,  b) and H = i a ,  b, P4)=P4A. By [H, III. 1.11] we 
obtain that [A,A] c_P4. We now use [H, III. 1.6, 1.10, 2.11] to observe that 

H; c_ P; + 2 for all i > 2. Indeed, 

/-/2 = In ,  H I  = [P4A, H I  = [P4, HI[A, HI 

= [P,, H][A, P,I[A,A] c_ p4Psp 4 C_ P,; 

so He ___ P4. Assume by induction that Hi ___ Pi +: for some i. Then: 

Hi+, = [Hi, H] __c [P~+2, H] _c Pi+3 

as needed. By assumption Pp+2 = 1 and thus H, __. P,+2 -- 1 so that cl(H) < 
p -  1. In particular H is regular. By Lemma 2.1 H/H t3 P' in an FW- 

complement and so [LP] implies that H/H tq P' _~ HP'/P' is cyclic. Denote 

images modulo P4 by bars. Then 

X ' /  ' HP'/P' = id, 6)P4P'/P' = I , Y) Q Q.  

x ' /  ' We conclude that U = i , y~Q Q is cyclic. But U c_c_ Q/Q' which is elemen- 

tary abelian so that I U I = p, as claimed. 
i /  I As x ~ Q', ix, Q')/Q' itself has order p so that U = ix,  Q ) Q and conse- 

quently y ~ i x ,  Q') for all yECo.(x) so Co.(x)C_ ix, Q') for all x ~ Q k Q ' .  
Now 

[(x, Q')I  = p lO'l = p lQ'" Q3[ ]Q31 -- p"+'+~ 
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and on the other hand 

} CQ(X) I = I CO-SQ,(XQ')I = I Q : Q'I = p2~, 

as (Q, Q') is an F2-pair. It follows that p2~ < p~+,+~ and since r < n we have 

that either n = r + 1 or n --- r. I f n  = r + 1 then 

I<x, a '>l  = p 2 ~ =  Ifo-(x)l f o r a l l x E a \ Q '  

which implies that Co-(x)= <x, Q') for all x ~ Q \ Q'. This means that Q' 

centralizes <Q \¢b(Q)> c_ <Q \Q'>.  Thus Q'c_ Z(Q) and so e l (Q)=  2, a con- 

tradiction. 

Therefore r = n ,  IQI =p4n and I{x, Q') : Co-(x)l = p  for all x ~ Q \ Q ' .  
For each such x let R(x)  = Q' N Co-(x). Then Co-(x) = <x, R(x))  and 

I Q ' :R(x ) I  = p. As Q3 c__ Z(Q) we have that Q3 c_ R(x).  Thus each R(x)  is a 

maximal subgroup of Q' containing (23. The number, 2, of  maximal subgroups 

of  Q' containing Q3 is equal to the number of maximal subgroups of Q'/Q3 
which is elementary abelian of order p~. Hence 

p~ - 1 
2 =  

p - 1  

Consider now the 
p2n  - -  1 

p - - 1  

subgroups of order p of Q/Q'. Each of these subgroups is of the form {xQ'> for 

some x E Q \ Q' and so each of  these yields an R(x).  Set ~ = lt/2 = pn + 1. AS 
the number of all the R (x)'s is no more than 2 we get that there exists ~ distinct 
subgroups of order p, (xiQ'), for some xi ~ Q \ Q', 1 < i < ~, such that 

R ~ R ( x O  = R(x2) . . . . .  R(x¢). 

As x~ECo-(R(x~)) we get that xiE=.CO-(R)\Q' for all i = 1, 2 . . . . .  ~. As Q' is 

abelian, Q' c_ Co.(R ) and so (x~Q') for i = 1, 2 , . . . ,  ~ are distinct subgroups of 

order p of CO-(R )/Q'. Hence I CO-(R )/Q'[ > pn + I because a p-group of  order pn 

or less has no more than ( p n  - 1 ) / ( p  - 1) < ~ subgroups of  order p .  

Finally, let t ~ R \ Q3 c__ Q' \ (23. Such t exists for otherwise R = {23 which 
means that [ Q '  : Q31 = p which implies that n = 1, contradicting the fact that 

n is even. Clearly CO-(R) c. Co.(t ) and Q' c__ Co-(t). Thus 

ICo-(t)/Q'l >-__ ICO-(R)/Q'I ~ p~+~ 
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On the other hand we use [M, 5.2] to obtain that (Q, Q3) is also an F2-pair, 

Q' = Z2(Q) and Q3 = Z(Q). Since t ~ Q ' \  Q3 = Z2(Q) \Z (Q)  we get that tQ3E 
Z(Q/Q3) and so: 

I Co(t)[ = I Co./o,(tQ3) I = I Q/Q3I = p3n 

It follows that 

I CQ(t)/Q'I - 

a final contradiction. 

IQ :Q ' I  

IQ: CQ(t)I 

and IQ: CQ(t)l = p4"-3" = p ". 

_ p2n-n = pn, 

So, IMI ~ [P: SI -- p2. By case 4 M ~ Z(P) and by [M, 2.1] M = Z~(P) for 

some i. If  I MI = p then M = Z(P), a contradiction. Thus I MI = p2 and so 

M = Z2(P). Also, 

ISI = I fe(x) l  = ICe/M(XM)I = I P : M I  f o r a l l x E S k M .  

We claim that M C_ S. To see that, let C = Ce(M). Then I P : C I divides 

I Aut(M) Ip = P and so I P :  C I = P. It follows that 

I P : S  63 CI = IP: CI I f :  C 63SI = Ie :  CI I C S : S I  ~ p3. 

Hence [ S A C I > I M [ .  Now, let y E S t 3 C \ M .  By the above, S =  

Ce(y) 3_ M,  as claimed. 

From the last two paragraphs we conclude that S / M  C_ Z(P/M) .  If S / M  < 

Z ( P / M )  then I P /M:  Z ( P / M )  I = p and so P / M  = P/Z2(P) would be abelian 

forcing c l (P)=  3, a contradiction. Therefore S / M  = Z (P /M)  and so S = 

Z3(P). 

Set X = P/Z(P).  Then (X, Z(X))  is an F2-pair and [M, 2.21 implies that 

S / M  = Z3(P)/Z2(P) -~ Z2(X)/Z(X) is elementary abelian. On the other hand 

S / M  c_ Ce(x)/M = Ce(x)/(Ce(x) n M)  and [S, 1.4] implies that S / M  is 

ISI ~ I fe(x) l  = I f em(xM) l  ~ I P : M I .  

To complete the proof we consider the last case: 

CASE 7: P contains an abelian subgroup, S, o f  index p2. Recall that 

c l (P )>3 .  Now, Mcc_P' (by [M, 2.1]). If S = M  then S = M = P '  with 

I P : P ' I  = p2 and so (P/P3, P'/P3) is an F2-pair in which PqP3 = (P/P3)', 
cl(P/P3) = 3 and I e/e3 : e'/e31 = p2. This contradicts [M, 5.2]. If I P : M I = p2 

then M = P '  and we get a contradiction as above. Thus IS I > I MI and by [M, 
7.1 1 ] I P : M I > p4. Let x E S \ M. Then the F2 property of(P, M)  implies that 
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cyclic. It follows that I S / M  I = P and consequently t P: M I = p3 contradicting 
[M, 7.1]. • 

REMARK ON THE PROOF OF PART 7 OF THEOREM 3. By part 4 of  Theorem 

3, part 7 holds for all odd primes and forp = 2 when cl(P) = 3. Hence we may 
assume that p = 2 and cl(P) = 4. Also we may assume that M = P N K ~ Z(P)  

(by part 5 of  Theorem 3) and that P ~ P' (by [M1, 3.1] and [CM, 5.1]). It 

follows that M -- P3 = Z2(P). Set Q -- P/P3. The proof is now by a detailed 
investigation of P and Q. We feel that the complete proof is rather long and it 
would be inappropriate to include it here. The complete proof is available 
from the authors. 
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