GENERALIZED FROBENIUS GROUPS. II

BY

DAVID CHILLAG,^{*†} AVINOAM MANN^b AND CARLO M. SCOPPOLA^{c,††} *Department of Mathematics, Technion — Israel Institute of Technology, Haifa 32000, Israel; bDepartment of Mathematics, The Hebrew University of Jerusalem, Jeruslaem, Israel; and ^cDipartimento di Matematica, Universita di Trento, 38050 Povo (Trento), Italy

ABSTRACT

A pair (G, K) in which G is a finite group and K a normal nontrivial proper subgroup of G is said to be an F2-pair (a Frobenius type pair) if $|C_G(x)| = |C_{G/K}(xK)|$ for all $x \in G \setminus K$. A theorem of Camina asserts that in this case either K or G/K is a p-group or else G is a Frobenius group with Frobenius kernel K. The structure of G will be described here under certain assumptions on the Sylow p-subgroups of G.

Introduction

A pair (G, K), where G is a finite group and K a normal nontrivial subgroup of G, is said to satisfy condition F2 if $|C_{G/K}(xK)| = |C_G(x)|$ for all $x \in G \setminus K$. Such a pair will be also called an F2-pair. We know of 5 types of examples of such groups; these will be described below. Our purpose here is to show that under certain conditions these are the only examples.

Here are the 5 types of examples:

Type 1: G is a Frobenius group and K is the Frobenius kernel.

Type 2: F2-pairs (G, K), where G is a p-group. These can be found in [M, M1]. They exist for every prime p. The simplest example here is G being an extra-special p-group and K = Z(G).

Type 3: F2-pairs, (G, K) in which K < P < G where P is a normal Sylow p-subgroup of G. Here (P, K) is also an F2-pair. Furthermore G = RP where R

^{t†} This author's research was partially supported by the MPI fund. Received September 6, 1987 and in revised form January 8, 1988

[†] This author's research was partially supported by the Technion V.P.R. fund – E.L.J. Bishop research fund.

is a p-complement and RK is a Frobenius group with Frobenius kernel K and Frobenius complement R. Examples of this type can be found in [CM]; they exist for any prime p.

Type 4: G is a Frobenius group in which a Frobenius complement is isomorphic to Q_8 (the quaternion group of order 8) and K is a subgroup of index 4. Examples of this type can be found in [C] and [CM].

Type 5: Two special examples of order $2^a 3^b$, one with K a 2-group and one with K a 3-group, that will be discussed later.

Many properties of F2-pairs of type 2 are established in [M, M1, Ma] and of those of type 3 in [CM]. Recently, an example of class 4 was constructed by C. K. Gupta.

A Theorem of Camina, [C], states that if (G, K) is an F2-pair not of type 1, then either K or G/K is a p-group for some prime p. Hence, there is a prime associated with every F2-pair not of type 1. To specify this prime, we will call an F2-pair, (G, K), an F2(p)-pair if either K or G/K is a p-group, but (G, K) is not of type 1. We note that in F2-pairs (G, K) of types 3 and 5 we have that K is a p-group, while in those of types 2 and 4 G/K is a p-group.

Let (G, K) be an F2(p)-pair with K a p-group and $P \in Syl_p(G)$. We will see that K is a member of every central series of P. Thus the cases K = P' = [P, P] and K = Z(P) are of interest. It turns out that in both cases G has to be of type 3.

THEOREM 1. Let (G, K) be an F2(p)-pair for some prime p and let $P \in Syl_p(G)$. Suppose that either (i) K = Z(P) or (ii) K = P'. Then (G, K) is of type 3.

COROLLARY 2. Let (G, K) be an F2(p)-pair for some prime p with K a pgroup. Let $P \in Syl_p(G)$. Suppose that either

- (i) P/K is abelian, or
- (ii) The nilpotency class of P is at most 3, or
- (iii) $|P| \leq p^5$.

Then (G, K) is of type 3.

REMARK. The examples of type 5 are F2(p)-pairs in which K is a p-group but (G, K) is not of type 3. In these examples the nilpotency class of P is 4 and $|P| = p^6$. Thus the assumptions on the nilpotency class or the order of P in Corollary 2 cannot, in general, be relaxed.

For F2(p)-pairs, (G, K), with G/K a p-group we have:

THEOREM 3. Let (G, K) be an F2(p)-pair with G/K a p-group and let $P \in Syl_p(G)$. Assume that either one of the following holds:

(1) P is regular (in the sense of P. Hall).

(2) p is odd and P is abelian by cyclic.

(3) P is of maximal class.

(4) The nilpotency class of P is at most p + 1.

(5) $K \cap P = Z(P)$.

(6) P contains an abelian subgroup of index p^2 .

(7) The nilpotency class of P is at most 4.

Then (G, K) is either of type 2 or of type 4.

REMARK. We know of no other examples of F2(p)-pairs in which G/K is a p-group (except for pairs of types 2 and 4). Also, in general $K \cap P$ is a member of both the lower and the upper central series of P and G has a normal p-complement (see Lemma 2.1).

Section 1 of the paper includes the proofs of Theorem 1, Corollary 2, some other properties of F2(p)-pairs (G, K) with K a p-group and a discussion of pairs of type 5. Pairs with G/K a p-group are considered in Section 2 in which the proof of Theorem 3, as well as some other properties of such pairs, can be found.

Our notation is standard. We will mention here three pieces of notation: The nilpotency class of the nilpotent group T will be denoted by cl(T) and the lower central series of the group S will be denoted by $S_1 \ge S_2 \ge \cdots \ge S_m$, namely $S = S_1, S_2 = [S, S] = S', S_i = [S_{i-1}, S]$ for $1 \le i \le m$. The *i*-th term of the upper central series of S will be denoted by $Z_i(S)$.

We note here that (G, K) is an F2-pair if and only if for each $g \in G \setminus K$ and each $h \in K$, g is conjugate in G to gh (see [CM, 3.1]).

I. F2(p)-pairs, (G, K), with K a p-group

PROPOSITION 1.1. Let (G, K) be an F2(p)-pair with K a p-group and let $P \in Syl_p(G)$. Then K appears as a term in every central series of P.

PROOF. Let $P = Q_0 \ge Q_1 \ge Q_2 \ge \cdots \ge Q_{c+1} = 1$ be a central series of P (not necessarily the lower central series). As $Q_c \le Z(P)$ we get by [CM, 3.4] that $Q_c \le K$. So, there is an index *i* such that $1 \ne Q_i \le K$ but $Q_{i-1} \le K$. We claim that $Q_i = K$. Assume the contrary, namely, that $Q_i < K$ and let $x \in Q_{i-1} \setminus K$. We have that $[x, P] \le Q_i$. As the number of conjugates of x in P is equal to the number of elements in the set $\{[x, y] \mid y \in P\}$, we get that

 $|P: C_P(x)| \leq |Q_i| < |K|$. It follows that $|P/K| < |C_P(x)|$. Now the F2 property implies that:

$$|G/K|_p = |P/K| \ge |C_{G/K}(xK)|_p = |C_G(x)|_p \ge |C_P(x)| > |P/K| = |G/K|_p,$$

a contradiction.

In general, if (G, K) is an F2(p)-pair, then $P \cap K$ is a member of every central series of P. The proof is as above or from [CM, M1].

PROOF OF THEOREM 1. It suffices to show that $P \triangleleft G$. Once $P \triangleleft G$, then G = PM where M is a p-complement and we get that (G, K) is of type 3 by [CM, 4.2 and 4.3].

(i) $Z(P) = K \triangleleft G$ implies that $K = Z(P^g)$ for all $g \in G$ and by [CM, 4.5] we get that $P = P^g$ for all $g \in G$ so that $P \triangleleft G$ as desired.

(ii) Let G be a minimal counterexample and let $N \neq 1$ be a minimal normal subgroup of G contained in K. If N < K = P', then (G/N, K/N) is an F2(p)-pair. As $P/N \in Syl_p(G/N)$ and since (P/N)' = P'/N = K/N induction implies that $P/N \triangleleft G/N$, a contradiction. Thus K = N is a minimal normal subgroup of G. By [CM, 3.4 and 3.5] we get that cl(P) > 1 and that $Z(Q) \leq K$ for all $Q \in Syl_p(G)$. As K is minimal normal we get that $K = \langle Z(Q) | Q \in Syl_p(G) \rangle$ and consequently K centralizes $\bigcap \{Q | Q \in Syl_p(G)\} = O_p(G)$. Hence, $O_p(G) \leq C_G(K) \triangleleft G$. By [CM, 4.3] $C_G(K)$ is a p-group and so $C_G(K) = C_P(K) = O_p(G)$. If cl(P) = 2 then by Proposition 1.1 K = Z(P) and we get a contradiction using (i). Thus $cl(P) \geq 3$.

We now break the proof into steps.

Step 1. (P, K) is an F2-pair. In particular p is odd.

Let $x \in P \setminus P'$ and set $A = \{[x, y] \mid y \in P\}$. By the remark at the end of the introduction we have to show that A = P'. Clearly, $A \leq P'$ and $|A| = |\{y^{-1}xy \mid y \in P\}| = |P: C_P(x)|$. Now, P/P' centralizes xP' and as $P/P' \in$ Syl_p(G/P') we obtain that $|P/P'| = |C_{G/P'}(xP')|_p$. The F2 property implies that

$$|C_P(x)| \leq |C_G(x)|_p = |C_{G/P'}(xP')|_p = |P:P'|.$$

Consequently $|A| = |P: C_P(x)| \ge |P'|$ so that A = P' as desired. The fact that p is odd now follows from [M1, 3.1].

Step 2. $O_p(G)$ is abelian. As $K = P_2$ and $O_P(G) = C_P(P_2)$ we use [H, III. 2.14] to obtain that

$$(O_p(G))' = [C_P(P_2), C_P(P_2)] \leq Z(P).$$

But Z(P) < K and hence $(O_p(G))' < K$. Since K is a minimal normal subgroup we get that $(O_p(G))' = 1$ so that $O_p(G)$ is abelian.

Step 3. $O_p(G) > K$.

Suppose that $O_p(G) = K$. Then [CM, 4.4] implies that $O_p(G/K) = O_{p'}(G/K) = 1$. If, now, \overline{M} is a minimal normal subgroup of G/K, then \overline{M} has to be a direct product of nonabelian simple groups. So $|\overline{M}|$ is even and, as $p \neq 2$, the Sylow 2-subgroups of \overline{M} are either cyclic or generalized quaternion (see [CM, 4.3]). This contradicts [BS] and [H, IV.2.8]. Thus $O_p(G) > K$.

Step 4. Set $|P_2: P_3| = p^n$, then $|P: P_2| = p^{2n}$.

Note that $[P/P_4, P/P_4] = P_2/P_4$ and $[P/P_4, P/P_4, P/P_4] = P_3/P_4$. As (P, K) is an F2-pair it follows that $(P/P_4, K/P_4)$ is an F2-pair with $K/P_4 = [P/P_4, P/P_4]$. Now $cl(P/P_4) = 3$ and $|P_2/P_4: P_3/P_4| = p^n$ so we can apply [M, 5.2] to conclude that $|P:P_2| = |P/P_4: P_2/P_4| = p^{2n}$.

Step 5. Final contradiction.

By Step 3 there is an element $x \in O_p(G) \setminus K$. As $O_p(G)$ is abelian and (P, K) is an F2-pair (by steps 1 and 2) we have that

$$|O_p(G)| \leq |C_P(x)| = |C_{P/K}(xK)| = |C_{P/P'}(xP')| = |P:P'| = p^{2n}.$$

Next, the Sylow *p*-subgroups of G/K are abelian and by [B] there exist two Sylow subgroups R and Q of G such that

$$O_p(G/K) = O_p(G)/K = (R/O_p(G)) \cap (Q/O_p(G)).$$

Thus $O_p(G) = R \cap Q$. Note that K = P' = R' = Q'. Let $1 \neq z \in Z(R) \subseteq K$ (by [CM, 3.4]). As no p'-element of G centralizes an element of K (see [CM, 4.3]) we get that $C_G(z)$ is a p-group and consequently $C_G(z) = R$. It follows that $C_Q(z) = R \cap Q = O_p(G)$. We note that as $z \in K = Q' = Q_2$ we know that $zQ_3 \in Q_2/Q_3 \subseteq Z(Q/Q_3)$. Finally we use [I, 2.24] and step 4 to obtain:

$$|O_p(G)| = |C_Q(z)| \ge |C_{Q/Q_3}(zQ_3)| = |Q/Q_3| = |P/P_3| = p^{3n}.$$

This contradicts the conclusion of the previous paragraph.

PROOF OF COROLLARY 2. (i) As P/K is abelian, $P' \subseteq K$. By Proposition 1.1 $K \subseteq P'$, hence K = P' and we are done by Theorem 1.

(ii) Proposition 1.1 implies that either K = P' or $K = P_3$. In the former case the result follows from Theorem 1. If $K = P_3$ then cl(P) = 3 so that $K \subseteq Z(P)$. Again, by Proposition 1.1 we get that $Z(P) \subseteq K$ so that K = Z(P) and the result follows from Theorem 1.

(iii) Let G be a counterexample of minimal order. Since the assumptions are inductive modulo normal subgroups contained in K we get that K is a minimal normal subgroup. As in the proof of Theorem 1 we get that it is suffices to prove that $P \triangleleft G$. By Part (ii) cl(P) = 4 so that $|P| = p^5$. So P has a unique normal subgroup of each of the orders p, p^2 , p^3 (see [H, III. 14.2]). By Theorem 1 $K \neq Z(P) = P_4$ and $K \neq P_2$ so that Proposition 1.1 implies that $K = P_3 = Z_2(P)$. Note that $|Z(P)| = |P_4| = p$, $|K| = p^2$ and $|P_2| = |Z_3(P)| = p^3$.

As in the proof of Theorem 1(ii) we get that $K = \langle Z(Q) | Q \in Syl_p(G) \rangle$ and that $O_p(G) = C_G(K)$. Also, any two distinct Sylow *p*-subgroups of *G* have disjoint centers ([CM, 4.5]) and as *K* has exactly p + 1 subgroups of order |Z(P)| = p we conclude that *G* has exactly p + 1 Sylow *p*-subgroups. Let Ω be the collection of these p + 1 subgroups and let *N* be the kernel of the action of *G* on Ω . Clearly the Sylow *p*-subgroup of *N* is $P \cap N = O_p(G)$. As G/N is a permutation group of degree p + 1 on Ω it follows that $p = |G/N|_p =$ $|PN/N| = |P/O_p(G)|$ so that $|O_p(G)| = p^4$.

If $O_p(G)$ is abelian an element $x \in O_p(G) \setminus K$ would have to satisfy

$$p^4 = |O_p(G)| \le |C_G(x)|_p = |C_{G/K}(xK)|_p \le |G/K|_p = p^3$$

(by the F2-property), a contradiction. Thus $O_p(G)$ is not abelian and as K is minimal normal in G we get that

$$[O_p(G), O_P(G)] = K, \quad [O_p(G), O_p(G), O_p(G)] = 1$$

and both K and $O_p(G)/K$ are elementary abelian (see [H, III.7.1]). In particular, $O_p(G)$ is of class 2. It follows that the Frattini subgroup of $O_p(G)$ is also K and so $O_p(G)$ is generated by two elements. By [H, III. 1.11(c)] $K = [O_p(G), O_p(G)]$ is cyclic, a contradiction.

EXAMPLES. As mentioned before, pairs (G, K) of type 5 are examples of F2(p)-pairs with K a p-group (for p = 2 or 3), which are not of type 3. This fact is proved in [G, p. 383] where these examples were introduced. Since normality of P implies that the pair is of type 3, it was asked in [CM] whether for any F2(p)-pair with K a p-group, (P, K) is also a F2-pair. We will see now that the Gagola's examples (type 5) are counterexamples to this assertion. These examples do not seem to be generalizable for p > 3, so for p > 3 it is still possible that $P \triangleleft G$ for F2(p)-pairs, (G, K), with K a p-group.

Let p be the prime 2 or 3, $R = Z/p^2 Z$, $M = R \oplus R$ and $K = \Omega_1(M)$.

Consider the group S, whose elements are 2×2 matrices with coefficients in R, as follows: If p = 2,

$$S = \left\langle \begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix}, \begin{pmatrix} 1 & -1 \\ 2 & -1 \end{pmatrix} \right\rangle$$

and if p = 3,

$$S = \left\langle \begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix}, \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 4 \\ 6 & 7 \end{pmatrix} \right\rangle.$$

More detailed description of the structure on S can be found in [G].

Consider now, in both cases, the (natural) semidirect product, G, of M with S. In [G, p. 367 and 383] it is shown that (G, K) is an F2(p)-pair. Let $P \in Syl_p(G)$, then P is not normal in G. We show now that (P, K) is not an F2-pair. For p = 2, P is the semidirect product of M with $\langle a \rangle$ where

$$a = \begin{pmatrix} 1 & -1 \\ 2 & -1 \end{pmatrix}.$$

Note that P/K is not abelian, since aK interchanges, by conjugation in P/K, xK and yK, where $x = (0, 1) \in M$ and $y = (1, 1) \in M$. Thus $xK \notin Z(P/K)$ and $|C_{P/K}(xK)| \leq 8$. But $|C_P(x)| \geq 16$, since M centralizes x.

For p = 3, P is generated by M and

$$a = \begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix}, \qquad b = \begin{pmatrix} 1 & 4 \\ 6 & 7 \end{pmatrix}.$$

Again, P/K is not abelian: bK permutes cyclically, by conjugation in P/K, the three elements xK, yK, zK, where x = (0, 1), y = (1, 1), z = (-1, 1), $x, y, z \in M$. Now, $|C_{P/K}(xK)| \leq 27$, while $|C_P(x)| \geq 81$. Hence (P, K) is not an F2-pair in either case.

II. (F2(p))-pairs, (G, K), with G/K a p-group

We start with a definition.

DEFINITION. A finite group X is called here a Frobenius–Wielandt complement (FW-complement for short) if there exist a finite group G with $H \triangleleft G$ and a prime q not dividing |G| such that:

- (i) G acts on an elementary abelian q-group Q.
- (ii) All the elements in $G \setminus H$ act fixed point freely on Q.
- (iii) $X \cong G/H$.

See [E, p. 564] for its definition of FW-complements and the second part of Theorem 1.5 of [E] (with its short proof) for the alternate definition which is like ours.

LEMMA 2.1. Let (G, K) be an F2(p)-pair with G/K a p-group Then:

(a) G has a normal p-complement.

(b) Assume that G is not a p-group. Let $P \in Syl_p(G)$ and R the normal p-complement of G. Then all the elements of $G \setminus K$ act fixed point freely on R. In particular $T/T \cap K$ is a FW-complement for every subgroup T of P with $T \not\leq K$. (c) G is solvable.

PROOF. Write G = PK where P is a Sylow p-subgroup of G. By [CM, 3.6] (P, $P \cap K$) is an F2-pair. By [M, 2.1] $P \cap K \subseteq [P, P] \subseteq \Phi(P)$ where $\Phi(P)$ is the Frattini subgroup of P. By a Theorem of Tate [H, IV.4.7] K has a normal p-complement which is clearly a normal p-complement of G. This proves (a).

To see (b), take $g \in G \setminus K$. Then $|C_G(g)| = |C_{G/K}(gK)|$ which is a *p*-power. Hence *g* commutes with no *p'*-element. Therefore all elements of $G \setminus K$, including those in $T \setminus T \cap K$, act fixed-point-freely on *R*. By the Frattini argument, *P* normalizes some Sylow *q*-subgroup, Q_0 , of *R*. Set $Q = \Omega_1(Z(Q_0))$. Then all elements of $P \setminus P \cap K$ (and those of $T \setminus T \cap K$) act fixed-point-freely on *Q* and (b) follows. Part (c) is a consequence of the classification of the finite simple groups (see [GO1, p. 55]) and parts (a) and (b).

REMARK. Lemma 2.1(a) was also proved, independently, by Isaacs [I1, Th.C].

LEMMA 2.2. Let (P, M) be an F2-pair, where P is a p-group of class c. If $M \neq Z(P)$ then $cl(Z_{c-1}(P)) \leq c - 2$.

PROOF. Set $Z_j = Z_j(P)$ for $1 \le j \le c$. By [M, 2.1] $M = Z_i = P_{c+1-i}$ for some *i*. By assumption $i \ge 2$ and so by [M, 2.4] $cl(P) \ge 3$. Now [H, III.2.11] implies that

$$[Z_i, Z_{c-1}] = [P_{c+1-i}, Z_{c-1}] \subseteq Z_{c-1-(c+1-i)} = Z_{i-2}.$$

Therefore

 $1 \leq Z_1 \leq Z_2 \leq \cdots \leq Z_{i-2} \leq Z_i \leq Z_{i+1} \leq \cdots \leq Z_{c-1}$

is a central series of length c - 2 for Z_{c-1} .

PROOF OF THEOREM 3, PARTS 1-6. Let G be a counterexample of minimal order. Set $M = P \cap K$, then G is not a p-group and $M \neq 1$ (see [CM, 3.3]). By Lemma 2.1 P/M is a FW-complement and by [C, Lemma 7] P/M is not cyclic.

Also, as G = KP, (P, M) is an F2-pair (see [CM, 3.6]). Furthermore, by [CM, 5.1], $cl(P) \ge 3$. We claim that P is a maximal subgroup of G. For if P < U < G for some subgroup U of G then G = UK and so $(U, K \cap U)$ is an F2-pair (by [CM, 3.6]) with $U/K \cap U \cong UK/K \cong G/K$. Now, $K \cap U \supseteq K \cap P \neq 1$, so that $K \cap U$ is not a p'-group and so U is not a Frobenius Group with Frobenius kernel $K \cap U$ (see [CM, 3.2]). Hence, $(U, K \cap U)$ is an F2(p)-pair with $U/U \cap K$ p-group. By induction we get that |P| = 8 so that cl(P) < 3, a contradiction. Hence, P is maximal in G.

Set Z = Z(P), let $z \in Z$ and write $D = C_G(z)$. Then $D \ge P$. Suppose that D = G. By [CM, 3.4], $z \in K$ and so $(G/\langle z \rangle, K/\langle z \rangle)$ is an F2-pair. If $G/\langle z \rangle$ is a Frobenius group with Frobenius Kernel $K/\langle z \rangle$ then G/K is isomorphic to a Frobenius complement forcing it to be either cyclic or generalized quaternion. This contradicts Lemma 7 of [C]. Thus $(G/\langle z \rangle, K/\langle z \rangle)$ is an F2(p)-pair and induction implies that p = 2 and $P/\langle z \rangle \cong Q_8$ with

$$|P:M| = |P:P \cap K| = |G:K| = |G/\langle z \rangle : K/\langle z \rangle| = 4.$$

As (P, M) is an F2-pair, $P' \supseteq M$ (by [M, 2.1]) and hence M = P'. Then [M1, 3.1] implies that cl(P) = 2, a contradiction. It follows that D < G and as P is maximal we have that D = P. We conclude that Z acts fixed-point-freely on the normal p-complement, Q, whose existence follows from Lemma 2.1. Then Z is a Frobenius complement in the Frobenius group ZQ. In particular Z is cyclic. Also, Q as a Frobenius kernel is nilpotent.

We will reach a contradiction in several cases that will cover all the cases of parts 1-6 of the Theorem.

CASE 1: P is regular. We get a contradiction by [LP].

CASE 2: p is odd and P is either of maximal class or abelian by cyclic. Using [S] we get that $M \supseteq [P, P]$. Now, (P, M) is an F2-pair and so [M, 2.1] implies that M = [P, P] = P'. We claim that P/M is of rank 2. This is clearly true when G is of maximal class. If P is abelian by cyclic, let A be a normal abelian subgroup of P with P/A cyclic. Then $P' \subseteq A$ and M = P' < A because otherwise P/M would be cyclic. As $M = P \cap K = A \cap K$ we get from Lemma 2.1 that A/M is an FW-complement. As A is abelian, A/M must be cyclic (see for example [LP] and hence P/M is metacyclic, which is of rank 2, as claimed. By [M, 2.1 and 2.3] P/M is elementary abelian and so $|P/M| = p^2$. Note that $(P/P_4, M/P_4)$ is an F2-pair with $cl(P/P_4) = 3$ and $M/P_4 = [P/P_4, P/P_4]$. By [M, 5.2] we have that $|P/P_4: M/P_4| \ge p^4$, a contradiction.

CASE 3: P has a cyclic subgroup of index 2. Let S be such a subgroup. As

P/M is not cyclic, $S \neq M$. Pick $x \in S \setminus M$. Then the F2 property of (P, M) implies that

$$|P/M| \ge |C_{P/M}(xM)| = |C_P(x)| \ge |S|$$

so that $|M| \leq |P/S| = 2$. It follows that |M| = 2 and $|P/M| = |C_{P/M}(xM)|$. Then $S/M \subseteq Z(P/M)$ which implies that P/M is abelian. Clearly $M \subseteq Z(P)$ and by [M, 2.1] M = Z(P). Hence, cl(P) = 2, a contradiction.

CASE 4: M = Z(P). Set Z = Z(P). Then Z is elementary abelian by [M, 2.2], and as Z is cyclic, |Z| = p. If there is an element of order p in $P \setminus M$ then [C, Lemma 4] implies that K is nilpotent. This is impossible as Z acts fixed-point-freely on Q and Z < K = MQ. Hence all the elements of order p of P lie in M, which has order p. Thus, P has exactly one subgroup of order p and P is not cyclic. Therefore P is generalized quaternion and a contradiction is obtained by the previous case.

Using the cases so far we can assume that $cl(P) \ge 3$, $M \ne Z(P)$ and P is neither regular nor of maximal class (the latter follows from cases 2 and 3 and [GO, pp. 191–194]).

CASE 5: $cl(P) \leq p+1$ and $M \neq P'$. Set c = cl(P) and $Z_j = Z_j(P)$ for $1 \leq j \leq c$. By [M, 2.1] $M = Z_i$ for some $i \geq 1$. As $M \neq Z(P)$, i > 1. If i = c - 1, then M = P' by [M, 2.1], a contradiction. Thus $1 < i \leq c - 2$ (so cl(P) > 3 in this case, for if cl(P) = 3 then M = P' or Z(P)). By Lemma 2.2 we get that $cl(Z_{c-1}) \leq c - 2 \leq p + 1 - 2 < p$ so that Z_{c-1} is regular (see [H, III.10.2]). Lemma 2.1(b) implies that Z_{c-1}/M is a FW-complement. It follows from [LP] that $Z_{c-1}/M = Z_{c-1}/Z_i$ is cyclic.

Suppose first that $i \leq c - 3$. Then $Z_2(P/M) = Z_2(P/Z_i) = Z_{i+2}/Z_i \subseteq Z_{c-1}/Z_i$ and so $Z_2(P/M)$ is cyclic. As P/M is not cyclic we get cl(P/M) > 2 and that p = 2 and P/M contains a cyclic subgroup of index 2 (see [H, III. 7.7]). Now [GO, pp. 191–193] implies that P/M is of maximal class and that |P/M: (P/M)'| = 4. By [M, 2.1] we have that $M = Z_i = P_{c+1-i} \subseteq P_2 = P'$ and consequently (P/M)' = P'/M which implies that |P:P'| = 4. Then P itself is of maximal class ([GO, p. 194]), a contradiction.

Hence i = c - 2. Set Q = P/M. Then $Z(Q) = Z(P/Z_{c-2}) = Z_{c-1}/Z_{c-2}$ is cyclic. Set $X = P/Z_{c-3}$ and $Y = M/Z_{c-3}$. Then (X, Y) is an F2-pair in which $Y = Z_{c-2}/Z_{c-3} = Z(X)$. By [M, 2.2] we know that $W = Z_2(X)/Z(X)$ and $V = Z_3(X)/Z_2(X)$ are elementary abelian. Note that:

$$W = \frac{Z_{c-1}/Z_{c-3}}{Z_{c-2}/Z_{c-3}} \cong Z_{c-1}/Z_{c-2} = Z(Q)$$

and

$$V = \frac{Z_c/Z_{c-3}}{Z_{c-1}/Z_{c-3}} \cong Z_c/Z_{c-1} \cong Q/Z(Q).$$

Therefore Z(Q), being cyclic, is of order p and so Q is an extra special p-group. Then $|Q| = |P/M| = p^{2s+1}$ for some natural number s ([GO, p. 204]), contradicting [M, 7.1].

CASE 6: $cl(P) \leq p + 1$ and M = P'. Here $M = Z_{c-1}(P) = P'$. Set $Q = P/P_4$ (possibly $P_4 = 1$). Then (Q, Q') is an F2-pair with $Q' = P'/P_4 = M/P_4$. Also cl(Q) = 3 and in particular Q' is abelian ([H, III. 2.11]). Let

$$|M:P_3| = |Q':Q_3| = p^n$$
 and $|P_3:P_4| = |Q_3| = p'$.

By [M, 5.2, 2.3 and M1, 2.1] we know that $|P:M| = |Q:Q'| = p^{2n}$, $r \le n$, *n* is even and that Q/Q' and Q'/Q_3 are elementary abelian.

Let $x \in Q \setminus Q'$ and $y \in C_Q(x)$. We claim that $|\langle x, y, Q' \rangle / Q'| = p$. To see that write $x = aP_4$, $y = bP_4$ with $a, b \in P \setminus P_4$. As [x, y] = 1 we have that $[a, b] \in P_4$. Set $A = \langle a, b \rangle$ and $H = \langle a, b, P_4 \rangle = P_4 A$. By [H, III. 1.11] we obtain that $[A, A] \subseteq P_4$. We now use [H, III. 1.6, 1.10, 2.11] to observe that $H_i \subseteq P_{i+2}$ for all $i \ge 2$. Indeed,

$$H_2 = [H, H] = [P_4A, H] = [P_4, H][A, H]$$
$$= [P_4, H][A, P_4][A, A] \subseteq P_4P_5P_4 \subseteq P_4;$$

so $H_2 \subseteq P_4$. Assume by induction that $H_i \subseteq P_{i+2}$ for some *i*. Then:

 $H_{i+1} = [H_i, H] \subseteq [P_{i+2}, H] \subseteq P_{i+3}$

as needed. By assumption $P_{p+2} = 1$ and thus $H_p \subseteq P_{p+2} = 1$ so that $cl(H) \leq p-1$. In particular H is regular. By Lemma 2.1 $H/H \cap P'$ in an FW-complement and so [LP] implies that $H/H \cap P' \cong HP'/P'$ is cyclic. Denote images modulo P_4 by bars. Then

$$\overline{HP'}/\overline{P'} = \langle \bar{a}, \bar{b} \rangle \overline{P_4} \overline{P'}/\overline{P'} = \langle x, y \rangle Q'/Q'.$$

We conclude that $U = \langle x, y \rangle Q'/Q'$ is cyclic. But $U \subseteq Q/Q'$ which is elementary abelian so that |U| = p, as claimed.

As $x \notin Q'$, $\langle x, Q' \rangle / Q'$ itself has order p so that $U = \langle x, Q' \rangle / Q'$ and consequently $y \in \langle x, Q' \rangle$ for all $y \in C_Q(x)$ so $C_Q(x) \subseteq \langle x, Q' \rangle$ for all $x \in Q \setminus Q'$. Now

$$|\langle x, Q' \rangle| = p |Q'| = p |Q': Q_3| |Q_3| = p^{n+r+1}$$

and on the other hand

$$|C_Q(x)| = |C_{Q/Q'}(xQ')| = |Q:Q'| = p^{2n},$$

as (Q, Q') is an F2-pair. It follows that $p^{2n} \leq p^{n+r+1}$ and since $r \leq n$ we have that either n = r + 1 or n = r. If n = r + 1 then

$$|\langle x, Q' \rangle| = p^{2n} = |C_Q(x)|$$
 for all $x \in Q \setminus Q'$

which implies that $C_Q(x) = \langle x, Q' \rangle$ for all $x \in Q \setminus Q'$. This means that Q' centralizes $\langle Q \setminus \Phi(Q) \rangle \subseteq \langle Q \setminus Q' \rangle$. Thus $Q' \subseteq Z(Q)$ and so cl(Q) = 2, a contradiction.

Therefore r = n, $|Q| = p^{4n}$ and $|\langle x, Q' \rangle : C_Q(x)| = p$ for all $x \in Q \setminus Q'$. For each such x let $R(x) = Q' \cap C_Q(x)$. Then $C_Q(x) = \langle x, R(x) \rangle$ and |Q': R(x)| = p. As $Q_3 \subseteq Z(Q)$ we have that $Q_3 \subseteq R(x)$. Thus each R(x) is a maximal subgroup of Q' containing Q_3 . The number, λ , of maximal subgroups of Q' containing Q_3 is equal to the number of maximal subgroups of Q'/Q_3 which is elementary abelian of order p^n . Hence

$$\lambda = \frac{p^n - 1}{p - 1}.$$

Consider now the

$$\mu = \frac{p^{2n} - 1}{p - 1}$$

subgroups of order p of Q/Q'. Each of these subgroups is of the form $\langle xQ' \rangle$ for some $x \in Q \setminus Q'$ and so each of these yields an R(x). Set $\xi = \mu/\lambda = p^n + 1$. As the number of all the R(x)'s is no more than λ we get that there exists ξ distinct subgroups of order p, $\langle x_iQ' \rangle$, for some $x_i \in Q \setminus Q'$, $1 \leq i \leq \xi$, such that

$$R \equiv R(x_1) = R(x_2) = \cdots = R(x_{\xi}).$$

As $x_i \in C_Q(R(x_i))$ we get that $x_i \in C_Q(R) \setminus Q'$ for all $i = 1, 2, ..., \xi$. As Q' is abelian, $Q' \subseteq C_Q(R)$ and so $\langle x_i Q' \rangle$ for $i = 1, 2, ..., \xi$ are distinct subgroups of order p of $C_Q(R)/Q'$. Hence $|C_Q(R)/Q'| \ge p^{n+1}$ because a p-group of order p^n or less has no more than $(p^n - 1)/(p - 1) < \xi$ subgroups of order p.

Finally, let $t \in R \setminus Q_3 \subseteq Q' \setminus Q_3$. Such t exists for otherwise $R = Q_3$ which means that $|Q': Q_3| = p$ which implies that n = 1, contradicting the fact that n is even. Clearly $C_0(R) \subseteq C_0(t)$ and $Q' \subseteq C_0(t)$. Thus

$$|C_Q(t)/Q'| \ge |C_Q(R)/Q'| \ge p^{n+1}.$$

On the other hand we use [M, 5.2] to obtain that (Q, Q_3) is also an F2-pair, $Q' = Z_2(Q)$ and $Q_3 = Z(Q)$. Since $t \in Q' \setminus Q_3 = Z_2(Q) \setminus Z(Q)$ we get that $tQ_3 \in Z(Q/Q_3)$ and so:

 $|C_Q(t)| = |C_{Q/Q_3}(tQ_3)| = |Q/Q_3| = p^{3n}$ and $|Q: C_Q(t)| = p^{4n-3n} = p^n$.

It follows that

$$C_{Q}(t)/Q'| = \frac{|Q:Q'|}{|Q:C_{Q}(t)|} = p^{2n-n} = p^{n},$$

a final contradiction.

To complete the proof we consider the last case:

CASE 7: P contains an abelian subgroup, S, of index p^2 . Recall that $cl(P) \ge 3$. Now, $M \subseteq P'$ (by [M, 2.1]). If S = M then S = M = P' with $|P:P'| = p^2$ and so $(P/P_3, P'/P_3)$ is an F2-pair in which $P'/P_3 = (P/P_3)'$, $cl(P/P_3) = 3$ and $|P/P_3: P'/P_3| = p^2$. This contradicts [M, 5.2]. If $|P:M| = p^2$ then M = P' and we get a contradiction as above. Thus |S| > |M| and by [M, 7.11] $|P:M| \ge p^4$. Let $x \in S \setminus M$. Then the F2 property of (P, M) implies that

$$|S| \leq |C_P(x)| = |C_{P/M}(xM)| \leq |P:M|.$$

So, $|M| \leq |P:S| = p^2$. By case $4 M \neq Z(P)$ and by [M, 2.1] $M = Z_i(P)$ for some *i*. If |M| = p then M = Z(P), a contradiction. Thus $|M| = p^2$ and so $M = Z_2(P)$. Also,

$$|S| = |C_P(x)| = |C_{P/M}(xM)| = |P:M| \quad \text{for all } x \in S \setminus M.$$

We claim that $M \subseteq S$. To see that, let $C = C_P(M)$. Then |P:C| divides $|\operatorname{Aut}(M)|_p = p$ and so |P:C| = p. It follows that

$$|P:S \cap C| = |P:C| |C:C \cap S| = |P:C| |CS:S| \le p^3.$$

Hence $|S \cap C| > |M|$. Now, let $y \in S \cap C \setminus M$. By the above, $S = C_P(y) \supseteq M$, as claimed.

From the last two paragraphs we conclude that $S/M \subseteq Z(P/M)$. If S/M < Z(P/M) then |P/M: Z(P/M)| = p and so $P/M = P/Z_2(P)$ would be abelian forcing cl(P) = 3, a contradiction. Therefore S/M = Z(P/M) and so $S = Z_3(P)$.

Set X = P/Z(P). Then (X, Z(X)) is an F2-pair and [M, 2.2] implies that $S/M = Z_3(P)/Z_2(P) \cong Z_2(X)/Z(X)$ is elementary abelian. On the other hand $S/M \subseteq C_P(x)/M = C_P(x)/(C_P(x) \cap M)$ and [S, 1.4] implies that S/M is

cyclic. It follows that |S/M| = p and consequently $|P:M| = p^3$ contradicting [M, 7.1].

REMARK ON THE PROOF OF PART 7 OF THEOREM 3. By part 4 of Theorem 3, part 7 holds for all odd primes and for p = 2 when cl(P) = 3. Hence we may assume that p = 2 and cl(P) = 4. Also we may assume that $M = P \cap K \neq Z(P)$ (by part 5 of Theorem 3) and that $P \neq P'$ (by [M1, 3.1] and [CM, 5.1]). It follows that $M = P_3 = Z_2(P)$. Set $Q = P/P_3$. The proof is now by a detailed investigation of P and Q. We feel that the complete proof is rather long and it would be inappropriate to include it here. The complete proof is available from the authors.

References

[B] J. S. Brodkey, A note on finite groups with an abelian Sylow group, Proc. Am. Math. Soc. 14 (1963), 132–133.

[BS] R. Brauer and M. Suzuki, On finite groups of even order whose 2-Sylow groups is a generalized quaternion group, Proc. Natl. Acad. Sci. U.S.A. 45 (1959), 1757–1759.

[C] A. R. Camina, Some conditions which almost characterize Frobenius groups, Isr. J. Math. 31 (1978), 153-160.

[CM] D. Chillag and I. D. Macdonald, Generalized Frobenius groups, Isr. J. Math. 47 (1984), 111-122.

[E] A. Espuelas, *The complement of a Frobenius–Wielandt group*, Proc. London Math. Soc. (3) **48** (1984), 564–576.

[G] S. M. Gagola, Characters vanishing on all but two conjugacy classes, Pacific J. Math. 109 (1983), 363-385.

[GO] D. Gorenstein, Finite Groups, Harper and Row, 1968.

[GO1] D. Gorenstein, Finite Simple Groups — An Introduction to Their Classification, Plenum Press, 1982.

[H] B. Huppert, Endliche Gruppen I, Springer-Verlag Berlin, 1967.

[I] I. M. Isaacs, Character Theory of Finite Groups, Academic Press, 1976.

[11] I. M. Isaacs, Coprime group actions fixing all nonlinear irreducible characters, to appear.

[LP] B. Lou and D. S. Passman, Generalized Frobenius complements, Proc. Am. Math. Soc. 17 (1966), 1166-1172.

[Ma] A. Mann, On p-groups of Frobenius type, Isr. J. Math., to appear.

[M] I. D. Macdonald, Some p-groups of Frobenius and extra special type, Isr. J. Math. 40 (1981), 350-364.

[M1] I. D. Macdonald, More on p-groups of Frobenius type, Isr. J. Math. 56 (1986), 335-344.

[S] C. M. Scoppola, Abelian generalized Frobenius complements for p-groups and the Hughes problem, Arch. Math., to appear.